

mit dem HSA Verfahren speziell für in Betrieb befindliche Abwasserdruckleitungen

M.Eng. Johannes König ,M.Eng. Benedict Montau, Prof. Dr.-Ing. Rita Hilliges Technische Hochschule Augsburg

Dichtheitsprüfung von in Betrieb befindlichen Abwasserdruckleitungen mit dem HSA-Normalverfahren

Bayerisches Landesamt für Umwelt

Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

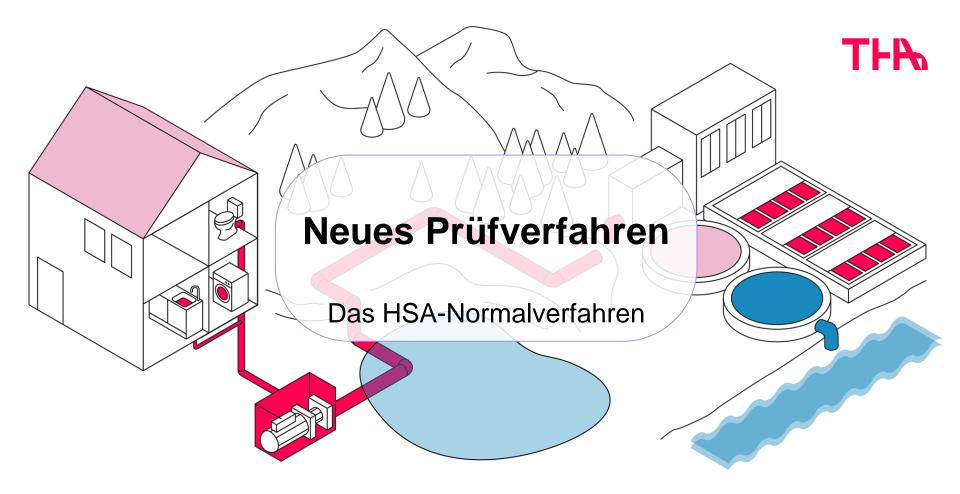
Notwendigkeit einer Dichtheitsprüfung

Schaden durch Abwasseraustritt in die Umwelt und somit möglicherweise in Grund-/ Trinkwasser verhindern.

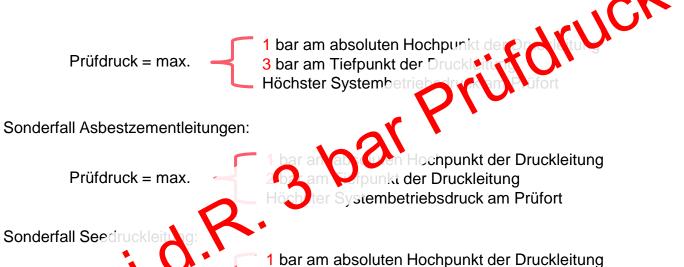
Welche Verfahren gibt es bereits?

- Verfahren für neue Trinkwasserleitungen nach DIN 805 bzw. W 400-2
 - Materialabhängig
 - Kontraktionsverfahren
 - Normalverfahren
 - Beschl. Normalverfahren
- Verfahren für Gasleitungen (G-469)
- Engl. Type 2 Test (IGN 4-01-03)

Nachteile dieser Verfahren: Lange Außerbetriebnahme (bis zu 48 Stunden) Hohe Prüfdrücke (15 bar bzw. 21 bar)

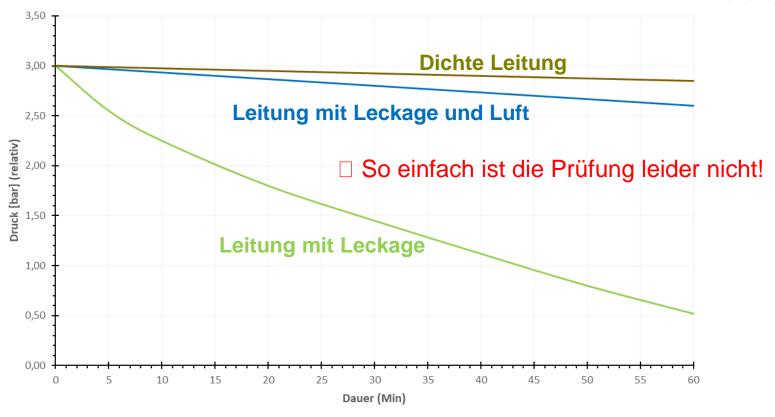

 Anpassung erforderlich um AWDL im Betrieb auf Dichtheit überprüfen zu können

Prüfen mit 15 bar?



Prüfdruck

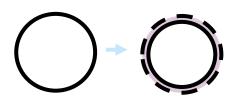
■ PE 80, PE 100, PVC, Guss, Stahl:



Höchster Systembetriebsdruck am Prüfort

3 bar am Tiefpunkt der Druckleitung

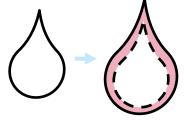
Einfluss der Luft bei Druckprüfungen

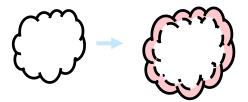


Physikalischer Hintergrund

Einflüsse auf die Druckdifferenz bei einem Wasseraustritt aus z.B. einer Leckage

Rohrkontraktion


wirkt einem Druckabfall infolge Wasseraustritt entgegen


$$V_{Material} = V_R * \Delta p * 0.1 * \frac{D}{e * E_R}$$

Wasserexpansion

wirkt einem Druckabfall infolge Wasseraustritt entgegen

$$V_{Wasser} = V_R * \Delta p * 0.1 * \frac{1}{E_W}$$

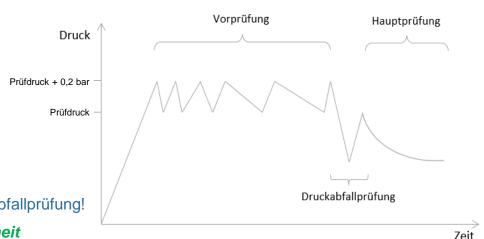
Luftexpansion

wirkt einem Druckabfall infolge Wasseraustritt entgegen

$$V_{Luft} = V_R * x \% * (\frac{1}{PD - p_{hyd} - \Delta p + 1} - \frac{1}{PD - p_{hyd} + 1})$$

Ablauf des Prüfverfahrens (HSA-Normalverfahren)

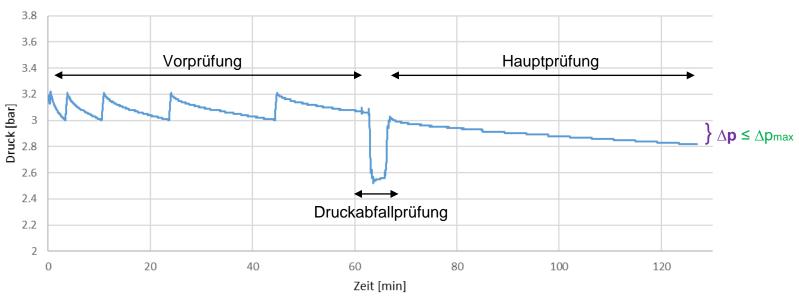
Vorprüfung (1h)


Anpassung des Materials an den Prüfdruck (Keine Aussage über die Dichtheit!)

- Druckabfallprüfung
 Bestimmung des Luftanteils im Prüfabschnitt
 (Keine Aussage über die Dichtheit!)
- Hauptprüfung (1h)

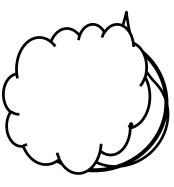
 nur nach bestandener Druckabfallprüfung!

 Druckabfall über eine Stunde als Kriterium für Dichtheit


Druckverlustverfahren mit Abwasser/Wasser:

Die Hauptprüfung

Bestimmung Grenzwert in der Hauptprüfung


Einflüsse auf den Druckverlust:

- Expansion des Wassers
- Kontraktion des Rohrmaterials
- Expansion der eingeschlossenen Luft

Daher leitungsspezifischer Grenzwert erforderlich! Dieser ist abhängig von:

- Steifigkeit Material
- Leitungsdimension
- Leitungsverlauf
- V.a. tatsächlicher Luftanteil

 Druckabfallprüfung

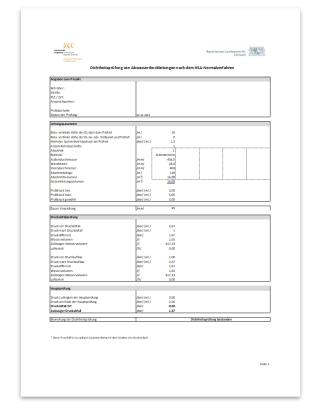
Begleitendes Exceltool für das HSA-Normalverfahren

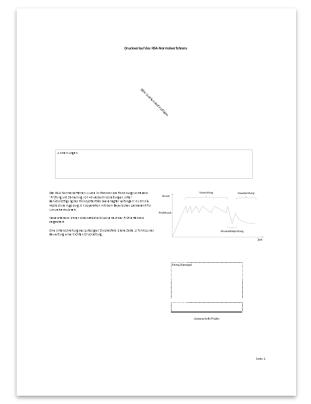


Einfaches Tool zur Bestimmung des zulässigen Druckabfalls

- Eingabewerte:
 - Bis zu fünf unterschiedliche Materialien / Rohrdimensionen
 - Wasservolumina / Druckdifferenzen in der Druckabfallprüfung
- Ausgabe:
 - Zulässiger & vorhandener Luftanteil
 - Zulässiger Druckabfall in der Hauptprüfung
 - Prüfprotokoll (muss nur um Druckverlauf des Druckloggers ergänzt werden)

Begleitendes Exceltool für Prüfverfahren




Position	₩ert	Einheit	
Druck vor Druckabfall		bar (rel.)	
Druck nach Druckabfall		bar (rel.)	
Druckdifferenz	0	bar	Onickables
₩asservolumen		I	**************************************
Zulässiges Wasservolumen für Druckablass		1	-0g
Maximal zulässiger Luftanteil Luftanteil aus Druckablass		% %	
Druck vor Druckaufbau		bar (rel.)	
Druck nach Druckaufbau		bar (rel.)	1
Druckdifferenz	0	bar	Onctan Ba
₩asservolumen		I .	Hay a
Zulässiges Wasservolumen für Druckaufbau		I	200
Maximal zulässiger Luftanteil		%	
Luftanteil aus Druckaufbau		%	I

Eingabe der Hauptprüfung		
Position	₩ert	Einheit
Startdruck der Hauptprüfung		bar (rel.)
zulässiger Druckabfall		bar
zulässiger Druck am Ende der Hauptprüfung		bar (rel.)
Druck am Ende der Hauptprüfung		bar (rel.)
Druckprüfung bestanden?		-

Begleitendes Exceltool für Prüfverfahren

Prüfvoraussetzungen

Voraussetzungen für eine Druckprüfung

Verschließbares Leitungsende

i.d.R. herkömmliche Absperrblasen nicht möglich

Verschließbares Leitungsende

Voraussetzungen für eine Druckprüfung

Verschließbares Leitungsende

i.d.R. herkömmliche Absperrblasen nicht möglich – Arbeitssicherheit!

Nach den Pumpen: Absperrmöglichkeit im Pumpwerk

Rückschlagklappen sind hierfür ungeeignet

Absperrmöglichkeit nach den Pumpen

M.Eng. Johannes König – Technische Hochschule Augsburg

Voraussetzungen für eine Druckprüfung

Verschließbares Leitungsende

i.d.R. herkömmliche Absperrblasen nicht möglich

Nach den Pumpen: Absperrmöglichkeit im Pumpwerk

Rückschlagklappen sind hierfür ungeeignet

Anschlussmöglichkeit für Prüfgeräte im Prüfabschnitt

Anschlussmöglichkeit für Prüfequipment

Voraussetzungen für eine Druckprüfung

Verschließbares Leitungsende

i.d.R. herkömmliche Absperrblasen nicht möglich

Nach den Pumpen: Absperrmöglichkeit im Pumpwerk

Rückschlagklappen sind hierfür ungeeignet

- Anschlussmöglichkeit für Prüfgeräte im Prüfabschnitt
- Außerbetriebnahme ermöglichen

Pumpenvorlage zuvor leeren, Rückstaumöglichkeiten prüfen, etc.

Ggf. Stromanschluss für Messgeräte

Außerbetriebnahme und Stromanschluss

Voraussetzungen für eine Druckprüfung

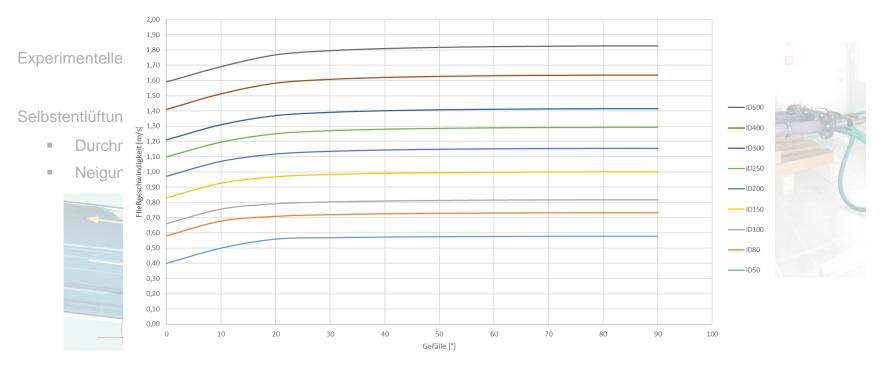
Verschließbares Leitungsende

i.d.R. herkömmliche Absperrblasen nicht möglich

Nach den Pumpen: Absperrmöglichkeit im Pumpwerk

Rückschlagklappen sind hierfür ungeeignet

- Anschlussmöglichkeit für Prüfgeräte im Prüfabschnitt
- Außerbetriebnahme ermöglichen


Pumpenvorlage zuvor leeren, Rückstaumöglichkeiten prüfen, etc.

- Ggf. Stromanschluss für Messgeräte
- Arbeitsschutz beachten (Gaswarngerät, Dreibein, ...)
- Möglichkeiten zum Luftaustrag bereitstellen

Ausreichendes Wasservolumen, Spülgeschwindigkeit, Molch

Austrag von Luft

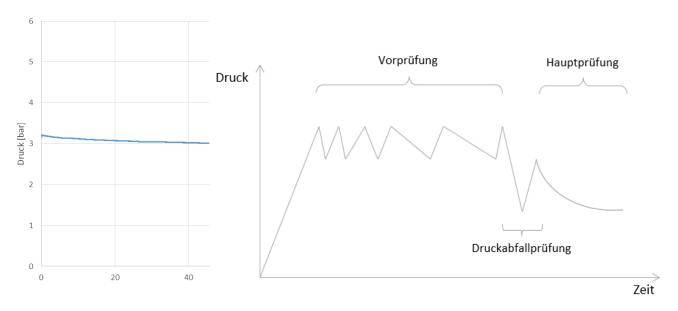
[☐] Selbstentlüftungsgeschwindigkeit > Geschwindigkeit gegen Sedimentation

Austrag von Luft

M.Eng. Johannes König – Technische Hochschule Augsburg

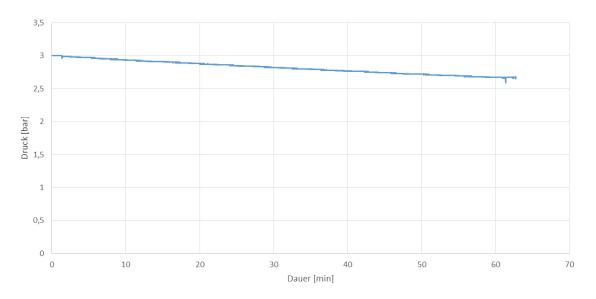
Ablauf einer realen Druckprüfung

Ablauf einer realen Druckprüfung



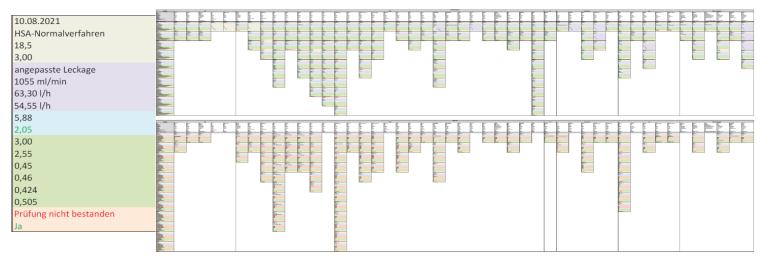
- Leitungsende in verschließbaren Zustand bringen
- Entlüften: Molchen / Spülen
- Leitungsende verschließen
- Prüfen
- Vorlagebehälter im Auge behalten

HSA-Normalverfahren ohne Leckage



Startdruck: 3,00 bar Enddruck: 2,93 bar Druckdifferenz: **0,07 bar**

HSA-Normalverfahren mit Leckage


Startdruck: 3,00 bar Enddruck: 2,66 bar

Druckdifferenz: 0,34 bar Leckagevolumen: 85l

Durchgeführte Prüfungen – reale Leitungen

- 263 Druckprüfungen, 47 Druckleitungen aller Materialien wurden überprüft und ausgewertet
- Variation von
 - 165 m bis 3039 m Leitungslänge
 - 63 mm bis 500 mm Rohrdurchmesser
 - 0,22 m³ bis 283,46 m³ Leitungsvolumen

Empfehlung und Havariekonzept

- Informationen über eigene Druckleitungen zusammenstellen (Zustand, Pläne, Schächte)
- Prüfbarkeit herstellen, ggfs. bauliche Maßnahmen erforderlich!
- Leitungen regelmäßig überprüfen!
 - Die Restlebensdauer kann nicht bestimmt werden
- Leitungsspezifischen Notfallplan erstellen
 - V.a. Alternativweg für den Abwassertransport muss bereit liegen
- Leitungsspezifische Überprüfung von Sanierungsmöglichkeiten
- Reparaturmaterial (z.B. Schellen) vorrätig lagern!

Dichtheitsprüfungen von Abwasserdruckleitungen in Betrieb

M.Eng. Johannes König M.Eng. Benedict Montau Prof. Dr.-Ing. Rita Hilliges

Vielen Dank für die Förderung des Projektes:

